Files
cgrates/utils/uli.go
ionutboangiu 4c64f4f876 add *3gpp_uli user location converter
Parses the 3GPP-User-Location-Info AVP into structured location data
allowing field access via an optional path (e.g. *3gpp_uli:TAI.MCC).
2026-02-11 15:43:27 +01:00

387 lines
9.2 KiB
Go

/*
Real-time Online/Offline Charging System (OCS) for Telecom & ISP environments
Copyright (C) ITsysCOM GmbH
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>
*/
package utils
import (
"encoding/binary"
"errors"
"fmt"
"strings"
)
// Geographic location types per 3GPP TS 29.061 section 16.4.7.2
const (
ULITypeCGI = 0 // Cell Global Identity (2G)
ULITypeSAI = 1 // Service Area Identity (3G)
ULITypeRAI = 2 // Routing Area Identity (2G/3G)
ULITypeTAI = 128 // Tracking Area Identity (4G)
ULITypeECGI = 129 // E-UTRAN Cell Global Identifier (4G)
ULITypeTAIECGI = 130 // TAI and ECGI (4G)
ULITypeNCGI = 135 // NR Cell Global Identifier (5G)
ULIType5GSTAI = 136 // 5G Tracking Area Identity
ULIType5GSTAINCGI = 137 // 5GS TAI and NCGI (5G)
)
// ULI holds decoded 3GPP-User-Location-Info.
type ULI struct {
CGI *CGI `json:"CGI,omitempty"`
SAI *SAI `json:"SAI,omitempty"`
RAI *RAI `json:"RAI,omitempty"`
TAI *TAI `json:"TAI,omitempty"`
ECGI *ECGI `json:"ECGI,omitempty"`
TAI5GS *TAI5GS `json:"TAI5GS,omitempty"`
NCGI *NCGI `json:"NCGI,omitempty"`
}
// CGI is Cell Global Identity (2G GSM).
type CGI struct {
MCC string `json:"MCC"`
MNC string `json:"MNC"`
LAC uint16 `json:"LAC"`
CI uint16 `json:"CI"`
}
// SAI is Service Area Identity (3G UMTS).
type SAI struct {
MCC string `json:"MCC"`
MNC string `json:"MNC"`
LAC uint16 `json:"LAC"`
SAC uint16 `json:"SAC"`
}
// RAI is Routing Area Identity (2G/3G).
type RAI struct {
MCC string `json:"MCC"`
MNC string `json:"MNC"`
LAC uint16 `json:"LAC"`
RAC uint8 `json:"RAC"`
}
// TAI is Tracking Area Identity (4G LTE).
type TAI struct {
MCC string `json:"MCC"`
MNC string `json:"MNC"`
TAC uint16 `json:"TAC"`
}
// ECGI is E-UTRAN Cell Global Identifier (4G LTE).
type ECGI struct {
MCC string `json:"MCC"`
MNC string `json:"MNC"`
ECI uint32 `json:"ECI"`
}
// TAI5GS is 5G Tracking Area Identity.
type TAI5GS struct {
MCC string `json:"MCC"`
MNC string `json:"MNC"`
TAC uint32 `json:"TAC"` // 24-bit (vs 16-bit in 4G TAI)
}
// NCGI is NR Cell Global Identifier (5G).
type NCGI struct {
MCC string `json:"MCC"`
MNC string `json:"MNC"`
NCI uint64 `json:"NCI"` // 36-bit NR Cell Identity
}
// DecodeULI parses 3GPP-User-Location-Info from bytes per 3GPP TS 29.061 section 16.4.7.2.
func DecodeULI(data []byte) (*ULI, error) {
if len(data) < 2 {
return nil, errors.New("ULI data too short")
}
uli := &ULI{}
locType := data[0]
pos := 1
switch locType {
case ULITypeCGI:
if len(data) < 8 { // 1 type + 3 PLMN + 2 LAC + 2 CI
return nil, errors.New("insufficient data for CGI")
}
uli.CGI = decodeCGI(data[pos:])
case ULITypeSAI:
if len(data) < 8 { // 1 type + 3 PLMN + 2 LAC + 2 SAC
return nil, errors.New("insufficient data for SAI")
}
uli.SAI = decodeSAI(data[pos:])
case ULITypeRAI:
if len(data) < 7 { // 1 type + 3 PLMN + 2 LAC + 1 RAC
return nil, errors.New("insufficient data for RAI")
}
uli.RAI = decodeRAI(data[pos:])
case ULITypeTAI:
if len(data) < 6 { // 1 type + 3 PLMN + 2 TAC
return nil, errors.New("insufficient data for TAI")
}
uli.TAI = decodeTAI(data[pos:])
case ULITypeECGI:
if len(data) < 8 { // 1 type + 3 PLMN + 4 ECI
return nil, errors.New("insufficient data for ECGI")
}
uli.ECGI = decodeECGI(data[pos:])
case ULITypeTAIECGI:
if len(data) < 13 { // 1 type + 5 TAI + 7 ECGI
return nil, errors.New("insufficient data for TAI+ECGI")
}
uli.TAI = decodeTAI(data[pos:])
uli.ECGI = decodeECGI(data[pos+5:])
case ULITypeNCGI:
if len(data) < 9 { // 1 type + 8 NCGI
return nil, errors.New("insufficient data for NCGI")
}
uli.NCGI = decodeNCGI(data[pos:])
case ULIType5GSTAI:
if len(data) < 7 { // 1 type + 6 5GS TAI
return nil, errors.New("insufficient data for 5GS TAI")
}
uli.TAI5GS = decodeTAI5GS(data[pos:])
case ULIType5GSTAINCGI:
if len(data) < 15 { // 1 type + 6 5GS TAI + 8 NCGI
return nil, errors.New("insufficient data for 5GS TAI+NCGI")
}
uli.TAI5GS = decodeTAI5GS(data[pos:])
uli.NCGI = decodeNCGI(data[pos+6:])
default:
return nil, fmt.Errorf("unsupported ULI location type: %d", locType)
}
return uli, nil
}
// decodePLMN extracts MCC and MNC from 3 bytes (TS 24.008 section 10.5.1.13).
// Each digit is one nibble: [MCC2|MCC1] [MNC3|MCC3] [MNC2|MNC1].
// MNC3=0xF means the MNC is only 2 digits.
func decodePLMN(data []byte) (mcc, mnc string) {
mcc1 := data[0] & 0x0F
mcc2 := data[0] >> 4
mcc3 := data[1] & 0x0F
mnc3 := data[1] >> 4
mnc1 := data[2] & 0x0F
mnc2 := data[2] >> 4
mcc = fmt.Sprintf("%d%d%d", mcc1, mcc2, mcc3)
if mnc3 == 0x0F {
mnc = fmt.Sprintf("%d%d", mnc1, mnc2)
} else {
mnc = fmt.Sprintf("%d%d%d", mnc1, mnc2, mnc3)
}
return
}
func decodeCGI(data []byte) *CGI {
// PLMN + LAC + CI (TS 29.274 section 8.21.1)
mcc, mnc := decodePLMN(data)
return &CGI{
MCC: mcc,
MNC: mnc,
LAC: binary.BigEndian.Uint16(data[3:5]),
CI: binary.BigEndian.Uint16(data[5:7]),
}
}
func decodeSAI(data []byte) *SAI {
// PLMN + LAC + SAC (TS 29.274 section 8.21.2)
mcc, mnc := decodePLMN(data)
return &SAI{
MCC: mcc,
MNC: mnc,
LAC: binary.BigEndian.Uint16(data[3:5]),
SAC: binary.BigEndian.Uint16(data[5:7]),
}
}
func decodeRAI(data []byte) *RAI {
// PLMN + LAC + RAC (TS 29.274 section 8.21.3)
mcc, mnc := decodePLMN(data)
return &RAI{
MCC: mcc,
MNC: mnc,
LAC: binary.BigEndian.Uint16(data[3:5]),
RAC: data[5],
}
}
func decodeTAI(data []byte) *TAI {
// PLMN + TAC (TS 29.274 section 8.21.4)
mcc, mnc := decodePLMN(data)
return &TAI{
MCC: mcc,
MNC: mnc,
TAC: binary.BigEndian.Uint16(data[3:5]),
}
}
func decodeECGI(data []byte) *ECGI {
mcc, mnc := decodePLMN(data)
// the leading 4 bits are spare (TS 29.274 section 8.21.5)
eci := binary.BigEndian.Uint32(data[3:7]) & 0x0FFFFFFF
return &ECGI{
MCC: mcc,
MNC: mnc,
ECI: eci,
}
}
func decodeTAI5GS(data []byte) *TAI5GS {
mcc, mnc := decodePLMN(data)
// TAC is 24 bits in 5GS (TS 38.413 section 9.3.3.11), unlike 16 bits in 4G TAI
tac := uint32(data[3])<<16 | uint32(data[4])<<8 | uint32(data[5])
return &TAI5GS{
MCC: mcc,
MNC: mnc,
TAC: tac,
}
}
func decodeNCGI(data []byte) *NCGI {
mcc, mnc := decodePLMN(data)
// the leading 4 bits are spare (TS 38.413 section 9.3.1.7)
// TODO: check why Wireshark's ULI dissector uses trail-spare for NCGI
nci := uint64(data[3]&0x0F)<<32 |
uint64(data[4])<<24 |
uint64(data[5])<<16 |
uint64(data[6])<<8 |
uint64(data[7])
return &NCGI{
MCC: mcc,
MNC: mnc,
NCI: nci,
}
}
// GetField retrieves a value found at the specified path (e.g. "TAI.MCC" or "ECGI.ECI").
func (uli *ULI) GetField(path string) (any, error) {
parts := strings.SplitN(path, ".", 2)
if len(parts) == 0 || parts[0] == "" {
return nil, errors.New("empty path")
}
var loc any
var mcc, mnc string
switch parts[0] {
case "CGI":
if uli.CGI == nil {
return nil, errors.New("CGI not present in ULI")
}
loc, mcc, mnc = uli.CGI, uli.CGI.MCC, uli.CGI.MNC
case "SAI":
if uli.SAI == nil {
return nil, errors.New("SAI not present in ULI")
}
loc, mcc, mnc = uli.SAI, uli.SAI.MCC, uli.SAI.MNC
case "RAI":
if uli.RAI == nil {
return nil, errors.New("RAI not present in ULI")
}
loc, mcc, mnc = uli.RAI, uli.RAI.MCC, uli.RAI.MNC
case "TAI":
if uli.TAI == nil {
return nil, errors.New("TAI not present in ULI")
}
loc, mcc, mnc = uli.TAI, uli.TAI.MCC, uli.TAI.MNC
case "ECGI":
if uli.ECGI == nil {
return nil, errors.New("ECGI not present in ULI")
}
loc, mcc, mnc = uli.ECGI, uli.ECGI.MCC, uli.ECGI.MNC
case "TAI5GS":
if uli.TAI5GS == nil {
return nil, errors.New("TAI5GS not present in ULI")
}
loc, mcc, mnc = uli.TAI5GS, uli.TAI5GS.MCC, uli.TAI5GS.MNC
case "NCGI":
if uli.NCGI == nil {
return nil, errors.New("NCGI not present in ULI")
}
loc, mcc, mnc = uli.NCGI, uli.NCGI.MCC, uli.NCGI.MNC
default:
return nil, fmt.Errorf("unknown ULI component: %s", parts[0])
}
if len(parts) == 1 {
return loc, nil
}
return uliFieldValue(loc, parts[1], mcc, mnc)
}
func uliFieldValue(loc any, field, mcc, mnc string) (any, error) {
switch field {
case "MCC":
return mcc, nil
case "MNC":
return mnc, nil
}
switch l := loc.(type) {
case *CGI:
switch field {
case "LAC":
return l.LAC, nil
case "CI":
return l.CI, nil
}
case *SAI:
switch field {
case "LAC":
return l.LAC, nil
case "SAC":
return l.SAC, nil
}
case *RAI:
switch field {
case "LAC":
return l.LAC, nil
case "RAC":
return l.RAC, nil
}
case *TAI:
if field == "TAC" {
return l.TAC, nil
}
case *ECGI:
if field == "ECI" {
return l.ECI, nil
}
case *TAI5GS:
if field == "TAC" {
return l.TAC, nil
}
case *NCGI:
if field == "NCI" {
return l.NCI, nil
}
}
return nil, fmt.Errorf("unknown field: %s", field)
}